M^K-TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL

GUO SHENG, HUANG CHUANGXIA AND LIU LANZHE

ABSTRACT. In this paper, we prove the M^K-type inequality for multilinear commutator related to generalized singular integral operator. By using the M^K-type inequality, we obtain the weighted L^p-norm inequality and the weighted estimate on the generalized Morrey spaces for the multilinear commutator.

2000 Mathematics Subject Classification: 42B20, 42B25.

1. Introduction and Preliminaries

Let $b \in BMO(\mathbb{R}^n)$ and T be the Calderón-Zygmund operator. Consider the commutator defined by

$$[b, T](f) = bT(f) - T(bf).$$

As the development of singular integral operators (see [5][16]), their commutators have been well studied. In [4][13][14][15], the authors prove that the commutators generated by the singular integral operators and BMO functions are bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. Chanillo (see [2]) proves a similar result when singular integral operators are replaced by the fractional integral operators. In this paper, we will study some singular integral operators as following (see [1][8]).

Definition 1. Let $T : S \to S'$ be a linear operator such that T is bounded on $L^2(\mathbb{R}^n)$ and there exists a locally integrable function $K(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x = y\}$ such that

$$T(f)(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

for every bounded and compactly supported function f, where K satisfies: there is a sequence of positive constant numbers $\{C_k\}$ such that for any $k \geq 1$,

$$\int_{2|y-z| < |x-y|} (|K(x, y) - K(x, z)| + |K(y, x) - K(z, x)|) dx \leq C,$$
and
\[
\left(\int_{2^k|z-y| \leq |x-y| < 2^{k+1}|z-y|} \left(|K(x, y) - K(x, z)| + |K(y, x) - K(z, x)| \right)^q dy \right)^{1/q} \leq C_k (2^k|z-y|)^{-n/q'},
\]
where \(1 < q' < 2\) and \(1/q + 1/q' = 1\).

Suppose \(b_j \ (j = 1, \cdots, m)\) are the fixed locally integrable functions on \(\mathbb{R}^n\). The multilinear commutator of the singular integral operator is defined by
\[
T_{\vec{b}}(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^m (b_j(x) - b_j(y)) K(x, y) f(y) dy.
\]

Note that the classical Calderón-Zygmund singular integral operator satisfies Definition 1 with \(C_j = 2^{-j\delta}\) (see [5][16]).

Also note that when \(m = 1\), \(T_{\vec{b}}\) is just the commutator what we mentioned above. It is well known that multilinear operator are of great interest in harmonic analysis and have been widely studied by many authors (see [13-14]). In [15], Pérez and Trujillo-Gonzalez prove a sharp estimate for the multilinear commutator. The purpose of this paper has two-fold, first, we establish a \(M^k\)-type estimate for the multilinear commutator related to the generalized singular integral operators, and second, we obtain the weighted \(L^p\)-norm inequality and the weighted estimates on the generalized Morrey space for the multilinear commutator by using the \(M^k\)-type inequality.

Definition 2. Let \(\varphi\) be a positive, increasing function on \(\mathbb{R}^+\) and there exists a constant \(D > 0\) such that
\[
\varphi(2t) \leq D\varphi(t) \quad \text{for} \quad t \geq 0.
\]
Let \(w\) be a non-negative weight function on \(\mathbb{R}^n\) and \(f\) be a locally integrable function on \(\mathbb{R}^n\). Set, for \(1 \leq p < \infty\),
\[
||f||_{L^p,\varphi(w)} = \sup_{x \in \mathbb{R}^n, \ d > 0} \left(\frac{1}{\varphi(d)} \int_{Q(x, d)} |f(y)|^p w(y) dy \right)^{1/p},
\]
where \(Q(x, d) = \{ y \in \mathbb{R}^n : |x - y| < d \}\). The generalized weighted Morrey space is defined by
\[
L^{p,\varphi}(\mathbb{R}^n, w) = \{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : ||f||_{L^p,\varphi(w)} < \infty \}.
\]
If \(\varphi(d) = d^\delta, \ \delta > 0\), then \(L^{p,\varphi}(\mathbb{R}^n, w) = L^{p,\delta}(\mathbb{R}^n, w)\), which is the classical Morrey spaces (see [11][12]). If \(\varphi(d) = 1\), then \(L^{p,\varphi}(\mathbb{R}^n, w) = L^p(w)\), which is the weighted Lebesgue spaces (see [5]).
As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [3][6][7][9][10]).

Now, let us introduce some notations. Throughout this paper, Q will denote a cube of \mathbb{R}^n with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by

$$(f^\#(x)) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy,$$

where, and in what follows, $f_Q = |Q|^{-1} \int_Q f(x) dx$. It is well-known that (see [5][16])

$$(f^\#(x)) \approx \sup_{Q \ni x} \inf_{c \in C} \frac{1}{|Q|} \int_Q |f(y) - c| dy.$$

We say that f belongs to $BMO(\mathbb{R}^n)$ if $f^\#$ belongs to $L^\infty(\mathbb{R}^n)$ and define $||f||_{BMO} = ||f^\#||_{L^\infty}$.

Let

$$M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

For $0 < p < \infty$, we denote $M_p f(x)$ by

$$M_p(f)(x) = \left[M(|f|^p)(x) \right]^{1/p}.$$

For $k \in \mathbb{N}$, we denote by M^k the operator M iterated k times, i.e. $M^1(f)(x) = M(f)(x)$ and $M^k(f)(x) = M(M^{k-1}(f))(x)$ when $k \geq 2$.

Let Φ be a Young function and $\tilde{\Phi}$ be the complementary associated to Φ, we denote that the Φ-average by, for a function f,

$$||f||_{\Phi,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q \Phi \left(\frac{|f(y)|}{\lambda} \right) d(y) \leq 1 \right\}$$

and the maximal function associated to Φ by

$$M_{\Phi}(f)(x) = \sup_{z \in Q} ||f||_{\Phi,Q}.$$

The Young functions to be using in this paper are $\Phi(t) = t(1 + \log t)^r$ and $\tilde{\Phi}(t) = \exp(t^{1/r})$, the corresponding average and maximal functions denoted by $||\cdot||_{L(\log L)^r,B}$,

133
and any\(j = 1 \), we know the generalized Hölder’s inequality:
\[
\frac{1}{|Q|} \int_Q |f(y)g(y)| \, dy \leq \|f\|_{\dot{\Phi}(Q)} \|g\|_{\dot{\Phi}(Q)}.
\]

And we can also obtain the following inequalities:
\[
\|f\|_{L((logL)^1/r)} \leq M_{L((logL)^{1/r})}(f) \leq CM_{L((logL)^m)}(f) \leq CM^{m+1}(f),
\]
\[
\|b - b_Q\|_{expL^r} \leq C\|b\|_{BMO},
\]
\[
|b_{2^{k+1}Q} - b_{2Q}| \leq Ck\|b\|_{BMO}.
\]

for \(r, r_j \geq 1, j = 1, 2, \ldots, m \) with \(1/r = 1/r_1 + 1/r_2 \cdots + 1/r_m \), and \(b \in BMO(R^n) \).

Given a positive integer \(m \) and \(1 \leq j \leq m \), we denote by \(C_j^m \) the family of all finite subsets \(\sigma = \{\sigma(1), \cdots, \sigma(j)\} \) of \(\{1, \cdots, m\} \) of \(j \) different elements and \(\sigma(i) < \sigma(j) \) when \(i < j \). For \(\sigma \in C_j^m \), set \(\sigma^0 = \{1, \cdots, m\} \setminus \sigma \). For \(\vec{b} = (b_1, \cdots, b_m) \) and \(\sigma = \{\sigma(1), \cdots, \sigma(j)\} \in C_j^m \), set \(\vec{b}_\sigma = (b_{\sigma(1)}, \cdots, b_{\sigma(j)}) \), \(b_\sigma = \prod_{i=1}^j b_{\sigma(i)} \) and
\[
\|\vec{b}_\sigma\|_{BMO} = \prod_{i=1}^j \|b_{\sigma(i)}\|_{BMO}.
\]

We denote the Muckenhoupt weights by \(A_p \) for \(1 \leq p < \infty \)(see [5]), that is
\[
A_1 = \{ w : M(w)(x) \leq Cw(x), a.e. \}
\]

and
\[
A_p = \left\{ w : \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) \left(\frac{1}{|Q|} \int_Q w(x)^{-1/(p-1)} \, dx \right)^{p-1} < \infty \right\}, \quad 1 < p < \infty.
\]

2. THEOREMS AND PROOFS

Now we give some theorems as following.

Theorem 1. Let \(T \) be the singular integral operator as Definition 1, the sequence \(\{kmC_k\} \in l^1, \ q' \leq s < \infty, \ 0 < r < 1, \ k \geq m + 1, \ k \in N \) and \(b_j \in BMO(R^n) \) for \(j = 1, \cdots, m \). Then there exists a constant \(C > 0 \) such that for any \(f \in C_0^\infty(R^n) \) and any \(\vec{x} \in R^n \),
\[
(T_{\vec{b}}(f))^s_{pr}(\vec{x}) \leq C\|\vec{b}\|_{BMO} \left(M^k(f)(\vec{x}) + \sum_{j=1}^m \sum_{\sigma \in C_j^m} M^k(T_{\vec{b}_\sigma}(f))(\vec{x}) + M_s(f)(\vec{x}) \right).
\]
Theorem 2. Let T be the singular integral operator as Definition 1, the sequence \(\{k^m C_k\} \in l^1 \), \(q' \leq p < \infty \), \(w \in A_p \) and \(b_j \in BMO(R^n) \) for \(j = 1, \ldots, m \). Then \(T_{\vec{b}} \) is bounded on \(L^p(w) \).

Theorem 3. Let T be the singular integral operator as Definition 1, the sequence \(\{k^m C_k\} \in l^1 \), \(q' \leq p < \infty \), \(w \in A_1 \) and \(b_j \in BMO(R^n) \) for \(j = 1, \ldots, m \). Then, if \(0 < D < 2^n \),

\[
\|T_{\vec{b}} f\|_{L^p(w)} \leq C\|\vec{b}\|_{BMO} \|f\|_{L^p(w)}.
\]

In order to better proof of the theorem above, we need the following lemmas

Lemma 1. Let \(1 < r < \infty \) and \(b_j \in BMO(R^n) \) with \(j = 1, \ldots, k \) and \(k \in \mathbb{N} \). Then, we have

\[
\frac{1}{|Q|} \int_Q \prod_{j=1}^k |b_j(y) - (b_j)_Q| dy \leq C \prod_{j=1}^k |b_j|_{BMO},
\]

\[
\left(\frac{1}{|Q|} \int_Q \prod_{j=1}^k |b_j(y) - (b_j)_Q|^{r/d} dy \right)^{1/r} \leq C \prod_{j=1}^k |b_j|_{BMO}.
\]

Similarly, for \(\sigma \in C_{m_k} \) when \(k \leq m \) and \(m \in \mathbb{N} \), we have:

\[
\frac{1}{|Q|} \int_Q |(b(y) - (b_j)_{Q_\sigma}| dy \leq C|b_\sigma|_{BMO}
\]

and

\[
\left(\frac{1}{|Q|} \int_Q |(b(y) - (b_j)_{Q_\sigma}|^{r/d} dy \right)^{1/r} \leq C|b_\sigma|_{BMO}.
\]

In fact, we just need to choose \(p_j > 1 \) and \(q_j > 1 \), where \(1 \leq j \leq k \), such that \(1/p_1 + \cdots + 1/p_k = 1 \) and \(r/q_1 + \cdots + r/q_k = 1 \). After that, using the Hölder’s inequality with exponent \(1/p_1 + \cdots + 1/p_k = 1 \) and \(r/q_1 + \cdots + r/q_k = 1 \), respectively, we may get the results.

Lemma 2. ([5, p.485]) Let \(0 < p < q < \infty \) and for any function \(f \geq 0 \). We define that, for \(1/r = 1/p - 1/q \)

\[
\|f\|_{WL^q} = \sup_{\lambda > 0} \lambda |\{x \in R^n : f(x) > \lambda\}|^{1/q}, \quad N_{p,q}(f) = \sup_E \|f\chi_E\|_{L^p}/\|\chi_E\|_{L^r},
\]

where the sup is taken for all measurable sets \(E \) with \(0 < |E| < \infty \). Then

\[
\|f\|_{WL^q} \leq N_{p,q}(f) \leq (q/(q-p))^{1/p} \|f\|_{WL^q}.
\]
Lemma 3. (see [5]) Let $0 < p, \eta < \infty$ and $w \in \bigcup_{1 \leq r < \infty} A_r$. Then
\[
\|M_\eta(f)\|_{L^p(w)} \leq C\|f^\#(f)\|_{L^p(w)}.
\]

Lemma 4. Let $1 < p < \infty$, $1 \leq q < p$ and $w \in A_1$. Then, if $0 < D < 2^n$,
\[
\|M_q(f)\|_{L^{p,q}(w)} \leq C\|f\|_{L^{p,q}(w)}.
\]

Proof. Let $f \in L^{p,q}(R^n, w)$. Note that $1 \leq q < p$ and for any $w \in A_1$,
\[
\int_{R^n} |M_q(f)(y)|^p w(y)dy \leq C \int_{R^n} |f(y)|^p w(y)dy.
\]
For a cube $Q = Q(x, d) \subset R^n$, we get
\[
\int_Q |M_q(f)(y)|^p w(y)dy \\
\leq \int_{R^n} |M_q(f)(y)|^p M(w\chi_Q)(y)dy \\
\leq C \int_{R^n} |f(y)|^p M(w\chi_Q)(y)dy \\
= C \left[\int_Q |f(y)|^p M(w\chi_Q)(y)dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q\setminus 2^kQ} |f(y)|^p M(w\chi_Q)(y)dy \right] \\
\leq C \left[\int_Q |f(y)|^p w(y)dy + \sum_{k=0}^{\infty} \frac{\int_{2^{k+1}Q\setminus 2^kQ} |f(y)|^p w(y)dy}{2^{2k+1}|Q|} \right] \\
\leq C \left[\int_Q |f(y)|^p w(y)dy + \sum_{k=0}^{\infty} \frac{\int_{2^{k+1}Q} |f(y)|^p w(y)dy}{2^{2k}|Q|^{\frac{n}{n-1}}} \right] \\
\leq C \left[\int_Q |f(y)|^p w(y)dy + \sum_{k=0}^{\infty} \int_{2^{k+1}Q} |f(y)|^p \frac{w(y)}{2^{2k}|Q|^{\frac{n}{n-1}}} dy \right] \\
\leq C\|f\|_{L^{p,q}(w)}^{\frac{p}{p-q}} \sum_{k=0}^{\infty} 2^{-nk}\varphi(2^{k+1}d) \\
\leq C\|f\|_{L^{p,q}(w)}^{\frac{p}{p-q}} \sum_{k=0}^{\infty} (2^{-n}D)^k \varphi(d) \\
\leq C\|f\|_{L^{p,q}(w)}^{\varphi(d)},
\]
thus
\[
\|M_q(f)\|_{L^{p,q}(w)} \leq C\|f\|_{L^{p,q}(w)}.
\]
Lemma 5. Let $1 < p < \infty$, $0 < D < 2^n$, $w \in A_1$. Then, for $f \in L^{p,\varphi}(R^n, w)$,
\[\|M(f)\|_{L^{p,\varphi}(w)} \leq C\|f\|_{L^{p,\varphi}(w)}. \]

Lemma 6. Let T be the bounded linear operators on $L^q(R^n, w)$ for any $1 < q < \infty$ and $w \in A_1$. Then, for $1 < p < \infty$, $w \in A_1$ and $0 < D < 2^n$,
\[\|T(f)\|_{L^{p,\varphi}(w)} \leq C\|f\|_{L^{p,\varphi}(w)}. \]

The proofs of two Lemmas are similar to that of Lemma 4, we omit the details.

Proof of Theorem 1. It suffices to prove for $f \in C^\infty_0(R^n)$ and some constant C_0, the following inequality holds:
\[\left(\frac{1}{|Q|} \int_Q \left| T^*_Q(f)(x) - C_0 \right|^r dx \right)^{1/r} \leq C\|\tilde{b}\|_{BMO} \left(M^k(f)(\tilde{x}) + \sum_{j=1}^m \sum_{\sigma \in C^m_j} M^k(T^*_{\tilde{b},\sigma}(f))(\tilde{x}) \right). \]

Fix a ball $Q = Q(x_0, d)$ and $\tilde{x} \in Q$, we write $f_1 = f\chi_{2Q}$ and $f_2 = f\chi_{(2Q)^c}$. Following [20], we will consider the cases $m = 1$ and $m > 1$, and choose $C_0 = T(((b_1)_{2Q} - b_1)f_2)(x_0)$ and $C_0 = T(\prod_{j=1}^m (b_j - (b_j)_{2Q})f_2)(x_0)$, respectively.

We first consider the Case $m = 1$. For $C_0 = T(((b_1)_{2Q} - b_1)f_2)(x_0)$, we write
\[T_{b_1}(f)(x) = (b_1(x) - (b_1)_{2Q})T(f)(x) - T((b_1 - (b_1)_{2Q})f)(x). \]

Then
\[|T_{b_1}(f)(x) - C_0| = \left| (b_1(x) - (b_1)_{2Q})T(f)(x) + T(((b_1)_{2Q} - b_1)f)(x) - T((b_1)_{2Q} - b_1)f_2)(x_0) \right| \]
\[\leq \left| (b_1(x) - (b_1)_{2Q})T(f)(x) \right| + \left| T(((b_1)_{2Q} - b_1)f_1)(x) \right| \]
\[+ \left| T((b_1)_{2Q} - b_1)f_2)(x) - T((b_1)_{2Q} - b_1)f_2)(x_0) \right| \]
\[= A(x) + B(x) + C(x). \]

For $A(x)$, we get
\[\left(\frac{1}{|Q|} \int_Q |A(x)|^r dx \right)^{1/r} \leq \frac{1}{|Q|} \int_Q |A(x)| dx \]
\[\leq \frac{1}{|Q|} \int_Q \left| (b_1(x) - (b_1)_{2Q})T(f)(x) \right| dx \]
\[\leq \|b_1 - (b_1)_{2Q}\|_{L,2Q} \|T(f)\|_{L(\log L),2Q} \]
\[\leq C\|b_1\|_{BMO} M^2(T(f))(\tilde{x}). \]
For $B(x)$, by the weak type $(1,1)$ of T and Lemma 2, we obtain

$$\left(\frac{1}{|Q|} \int_Q |B(x)|^r dx\right)^{1/r} \leq \frac{1}{|Q|} \int_Q |B(x)| dx \leq \frac{1}{|Q|} \int_Q |T((b_1)_{2Q} - b_1)f_1(x)| dx \leq \left(\frac{1}{|Q|} \int_{2Q} |T((b_1 - (b_1)_{2Q})f\chi_{2Q}(x))|^p dx\right)^{1/p} \leq \frac{1}{|Q|} \frac{1}{|Q|^{1/p-1}} \|T((b_1 - (b_1)_{2Q})f\chi_{2Q})\|_{L^p} \leq \frac{C}{|Q|} \|T((b_1 - (b_1)_{2Q})f\chi_{2Q})\|_{W^{1,1}} \leq \frac{C}{|Q|} \|((b_1 - (b_1)_{2Q})f\chi_{2Q})\|_{L^1} \leq \frac{C}{|Q|} \int_{2Q} |b_1(x) - (b_1)_{2Q}| |f(x)| dx \leq C|b_1 - (b_1)_{2Q}|_{\exp L, 2Q} \|f\|_{L(\log L), 2Q} \leq C|b_1|_{BMO} M^2(f) (\tilde{x})$.

For $C(x)$, recalling that $s > q'$, taking $1 < p < \infty$, $1 < t < s$ with $1/p + 1/q + 1/t = 1$, by the Hölder’s inequality, we have, for $x \in Q$,

$$|T((b_1 - (b_1)_{2Q})f_2)(x) - T((b_1 - (b_1)_{2Q})f_2)(x_0)| = \left|\int_{(2Q)^c} (b_1(y) - (b_1)_{2Q})f(y)(K(x, y) - K(x_0, y)) dy\right| \leq \sum_{k=1}^{\infty} \int_{2^k|x-x_0| \leq |y-x_0| < 2^{k+1}|x-x_0|} |K(x, y) - K(x_0, y)||f(y)||b_1(y) - (b_1)_{2Q}| dy \leq C \sum_{k=1}^{\infty} \left(\int_{2^k|x-x_0| \leq |y-x_0| < 2^{k+1}|x-x_0|} |K(x, y) - K(x_0, y)| dy\right)^{1/q} \times \left(\int_{|y-x_0| < 2^{k+1}|x-x_0|} |b_1(y) - (b_1)_{2Q}|^p dy\right)^{1/p} \left(\int_{|y-x_0| < 2^{k+1}|x-x_0|} |f(y)|^t dy\right)^{1/t} \leq C \sum_{k=1}^{\infty} C_k \left(\frac{2^{k+1}Q}{(2^k d)^{n/q'}}\right)^{1/p+1/t} |b_1|_{BMO} \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(y)|^n dy\right)^{1/s}.$$
\[\leq C ||b_1||_{BMO} \sum_{k=1}^{\infty} kC_k M_s(f)(\bar{x}) \]
\[\leq C ||b_1||_{BMO} M_s(f)(\bar{x}), \]
thus
\[\left(\frac{1}{|Q|} \right) \int_Q |C(x)|^r dx \right)^{1/r} \leq C ||b_1||_{BMO} M_s(f)(\bar{x}). \]

Now, we consider the Case \(m \geq 2 \). we have, for \(b = (b_1, \cdots, b_m) \),
\[
T_b(f)(x) = \int_{R^n} \prod_{j=1}^{m} (b_j(x) - b_j(y))K(x, y)f(y)dy
\]
\[= \int_{R^n} \prod_{j=1}^{m} [(b_j(x) - (b_j)_{2Q}) - (b_j(y) - (b_j)_{2Q})]K(x, y)f(y)dy
\]
\[= \sum_{j=0}^{m} \sum_{\sigma \in C_j} (-1)^{m-j}(b(x) - (b)_{2Q})_\sigma \int_{R^n} (b(y) - (b)_{2Q})_\sigma K(x, y)f(y)dy
\]
\[= \prod_{j=1}^{m} (b_j(x) - (b_j)_{2Q})T(f)(x) + (-1)^{m}T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q})f)(x)
\]
\[+ \sum_{j=1}^{m-1} \sum_{\sigma \in C_j} (-1)^{m-j}((b_j(x) - (b_j)_{2B})_\sigma T(b_j - (b_j)_{2B})_\sigma f)(x)
\]
thus, recall that \(C_0 = T(\prod_{j=1}^{m} (b_j - (b_j)_{2B})f_2)(x_0), \)
\[|T_b(f)(x) - T(\prod_{j=1}^{m} (b_j - (b_j)_{2B})f_2)(x_0)|
\]
\[\leq |\prod_{j=1}^{m} (b_j(x) - (b_j)_{2Q})T(f)(x)|
\]
\[+ |T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q})f_1)(x)|
\]
\[+ \sum_{j=1}^{m-1} \sum_{\sigma \in C_j} ((b_j(x) - (b_j)_{2Q})_\sigma T(b_j - (b_j)_{2Q})_\sigma f)(x)|
\]
\[+ |T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_2)(x)| - T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_2)(x_0)| = I_1(x) + I_2(x) + I_3(x) + I_4(x). \]

For \(I_1(x) \), we get,
\[
\left(\frac{1}{|Q|} \int_{Q} |I_1(x)|^r \, dx \right)^{1/r} \leq \frac{1}{|Q|} \int_{Q} |I_1(x)| \, dx
\]
\[
\leq \frac{1}{|Q|} \int_{Q} \prod_{j=1}^{m} |(b_j(x) - (b_j)_{2Q})||T(f)(x)| \, dx
\]
\[
\leq C \prod_{j=1}^{m} \| (b_j - (b_j)_{2Q}) \|_{L^{r/2}} \| T(f) \|_{L(\log L)^{r/2}}
\]
\[
\leq C \prod_{j=1}^{m} \| b_j \|_{BMO} M^{m+1}(T(f))(\tilde{x})
\]
\[
\leq C \| \tilde{b} \|_{BMO} M^k(T(f))(\tilde{x}).
\]

For \(I_2(x) \), by the boundness of \(T \) on \(L^p(\mathbb{R}^n) \) and similar to the proof of \(B(x) \), using Lemma 2, we get
\[
\left(\frac{1}{|Q|} \int_{Q} |I_2(x)|^r \, dx \right)^{1/r} \leq \frac{1}{|Q|} \int_{Q} |I_2(x)| \, dx
\]
\[
= \left(\frac{1}{|Q|} \int_{Q} |T(\prod_{j=1}^{m} (b_j(y) - (b_j)_{2Q}) f_1)(x)| \, dx \right)^{1/p}
\]
\[
\leq \left(\frac{1}{|Q|} \int_{Q} |T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_1)(x)|^p \, dx \right)^{1/p}
\]
\[
= \frac{1}{|Q|} \frac{1}{|Q|} \prod_{j=1}^{m} \| (b_j - (b_j)_{2Q}) f_1 \|_{L^p}
\]
\[
\leq \frac{1}{|Q|} \| T(\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_1) \|_{W_{L^p}}
\]
\[
\leq \frac{1}{|Q|} \| \prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_1 \|_{L^1}
\]
\[
\leq \frac{1}{|Q|} \int_B \prod_{j=1}^{m} |(b_j(x) - (b_j)_{2Q})| f_1(x) \, dx
\]
\begin{align*}
\leq \quad & C \prod_{j=1}^{m} \|(b_j - (b_j)_{2Q})\|_{\exp L^{1/r_j}, 2Q} \|f\|_{L(\log L)^{r}, 2Q} \\
\leq \quad & C \|\tilde{b}\|_{BMO} M^{m+1}(f)(\tilde{x}) \\
\leq \quad & C \|\tilde{b}\|_{BMO} M^{k}(f)(\tilde{x}).
\end{align*}

For $I_3(x)$, by Lemma 2,

\[
\left(\frac{1}{|Q|} \int_{Q} |I_3(x)|^r \, dx \right)^{1/r} \leq \frac{1}{|Q|} \int_{Q} |I_3(x)| \, dx
\]

\[
\leq \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} \frac{1}{|Q|} \int_{Q} |(b_j(x) - (b_j)_{2Q})_\sigma |T(b_j - (b_j)_{2Q})_\sigma (f)(x)| \, dx
\]

\[
\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} |(b_j(x) - (b_j)_{2Q})_\sigma |_{\exp L^{1/r_j}, 2Q} \|T(b_j - (b_j)_{2Q})_\sigma (f)\|_{L(\log L)^{r}, 2Q}
\]

\[
\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} |b_\sigma|_{BMO} M^{m+1}(T_{b_\sigma}(f))(\tilde{x})
\]

\[
\leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} \|\tilde{b}\|_{BMO} M^{k}(T_{b_\sigma}(f))(\tilde{x}).
\]

For $I_4(x)$, similar to the proof of $C(x)$ in the Case $m = 1$, for $1 < p < \infty, 1 < t < s$ with $1/p + 1/q + 1/t = 1$, we have

\[
|T((\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_2)(x) - T((\prod_{j=1}^{m} (b_j - (b_j)_{2Q}) f_2)(x_0))|
\]

\[
\leq C \sum_{k=1}^{\infty} \left(\int_{2^k|x-x_0| \leq |y-x_0| < 2^{k+1}|x-x_0|} |(K(x,y) - K(x_0,y))| |f(y)| \prod_{j=1}^{m} |(b_j(y) - (b_j)_{2Q})| \, dy \right)^{1/q}
\]

\[
\times \left(\int_{|y-x_0| < 2^{k+1}|x-x_0|} \prod_{j=1}^{m} |b_j(y) - (b_j)_{2Q}|^p \, dy \right)^{1/p} \left(\int_{|y-x_0| < 2^{k+1}|x-x_0|} |f(y)|^t \, dy \right)^{1/t}
\]

\[
\leq C \sum_{k=1}^{\infty} C_k \left(\frac{2^{k+q} |Q|^{1/p+1/t}}{(2^k d)^{q/n'}} \right)^{k} \prod_{j=1}^{m} \|b_j\|_{BMO} \left(\frac{1}{|2^k+1|Q} \int_{2^k+1|Q} |f(y)|^s \, dy \right)^{1/s}
\]

\[
\leq C \|\tilde{b}\|_{BMO} \sum_{k=1}^{\infty} k^m C_k M_s(f)(\tilde{x})
\]
\[\leq C||\vec{b}||_{BMO}M_s(f)(\tilde{x}), \]

thus
\[\left(\frac{1}{|Q|}\int_Q |I_4(x)|^r dx\right)^{1/r} \leq ||\vec{b}||_{BMO}M_s(f)(\tilde{x}). \]

This completes the proof of the theorem.

Proof of Theorem 2. Choose \(q' < s < p \) in Theorem 1, by the \(L^p(w) \)-boundedness of \(M^k \) and \(M_s \), we may obtain the conclusion of Theorem 2 by induction.

Proof of Theorem 3. We first consider the case \(m=1 \). Choose \(q' < s < p \) in Theorem 1, by Theorem 1 and Lemma 4-6, we obtain
\[||T_\vec{b}(f)||_{L^p(\nu)} \leq ||M(T_\vec{b}(f))||_{L^p(\nu)} \leq C||(T_\vec{b})^#(f)||_{L^p(\nu)} \]
\[\leq C||\vec{b}||_{BMO} \left(||M^k(f)||_{L^p(\nu)} + ||M^k(T(f))||_{L^p(\nu)} + ||M_s(f)||_{L^p(\nu)}\right) \]
\[\leq C||\vec{b}||_{BMO} \left(||f||_{L^p(\nu)} + ||T(f)||_{L^p(\nu)} + ||f||_{L^p(\nu)}\right) \]
\[\leq C||\vec{b}||_{BMO} \left(||f||_{L^p(\nu)} + ||f||_{L^p(\nu)}\right) \]
\[\leq C||\vec{b}||_{BMO}||f||_{L^p(\nu)}. \]

When \(m \geq 2 \), we may get the conclusion of Theorem 3 by induction.

This completes the proof of Theorem 3.

References

Guo Sheng, Huang Chuangxia and Liu Lanzhe
College of Mathematics
Changsha university of Science and Technology
Changsha, 410077, P. R. of China
email: lanzheliu@163.com